Jump to content

Confluent Hypergeometric Function: Difference between revisions

From Hackerpedia
imported>Unknown user
No edit summary
 
imported>Unknown user
No edit summary
Line 1: Line 1:
{{LanguageHeader|en}}
{{LanguageHeader|en}}
{{CyberTerm|definition=The confluent hypergeometric function is defined as Φ(a;b;z)=(Γ(b))/(Γ(a)Γ(b-a)) ∫_0^1〖e^zt t^(a-1) 〖(1-t)〗^(b-a-1) dt,0<a<b〗|source=NIST SP 800-22 Rev. 1a}}
{{CyberTerm|definition=The confluent hypergeometric function is defined as
Φ(a;b;z)=(Γ(b))/(Γ(a)Γ(b-a)) ∫_0^1〖e^zt t^(a-1) 〖(1-t)〗^(b-a-1) dt,0<a<b〗|source=NIST SP 800-22 Rev. 1a}}

Revision as of 01:42, 15 January 2026

Languages: English | Français

Confluent Hypergeometric Function

The confluent hypergeometric function is defined as Φ(a;b;z)=(Γ(b))/(Γ(a)Γ(b-a)) ∫_0^1〖e^zt t^(a-1) 〖(1-t)〗^(b-a-1) dt,0<a<b〗


Source: NIST SP 800-22 Rev. 1a | Category: