
CVS Cheat Sheet

Basic CVS

Specifying Repository
Using the global option -d

cvs -d :method:user@host:/cvs/dir

Setting the environment variable CVSROOT

export

CVSROOT=:method:user@host:/cvs/dir

Importing a Project
To import the project pirogi into CVS
cvs import -m "message" myproj vendortag

releasetag

Checking Out
To check out a working copy of myproj
cvs co myproj

Finding Out What You Did
To find out what modifications have been
made
cvs diff -c

Updating
To update your local copy with changes made
to the repository
cvs update

Committing
To send modifications in file1 and file2 to
the repository
cvs commit -m "message" file1 file2

Implicit Arguments
In most CVS commands, if you do not specify
an argument, the command acts recursively
on all the files in the current directory.

Conflict Resolution
Conflicts occur when same portion of the code
is modified and committed by different users.
The code in conflict is shown delimited by
markers. Keep the required code, remove the
unwanted code and the makers.

<<<<<<< (filename)

The code you wrote.

=======

Code in the repository.

>>>>>>> (latest revision in repository)

Finding Out Who Did What
To find out what changes have been made on
myfile and by whom
cvs log myfile

Examining Changes
To find out difference between revision rev1

and current working copy of the file myfile

cvs diff -c -r rev1 myfile

To find out difference between revision rev1

and rev2 of the file myfile

cvs diff -c -r rev1 -r rev2 myfile

Reverting Changes
To revert file from rev1 to rev2

cvs update -j rev1 -j rev2

File Operations

Adding Files
To add the file myfile, use the add command
followed by a commit
cvs add myfile

cvs commit -m "Added myfile."

Adding Directories
To add the directory mydir

cvs add mydir

Removing Files
To remove the file myfile, remove the file first
and then use the remove command
cvs remove myfile

Removing Directories
To remove a directory, first remove all the files
in it using the remove command, and then
prune the empty directory using
cvs update -P

Renaming Files/Directories
To rename a file/directory, remove the old file
from CVS and add the new file. :-)

Tags

Creating Tag
To tag the working copy with mytag

cvs tag -c mytag

You must have checked-in all required
modifications before running this command.

Deleting Tags
To delete the tag mytag

cvs tag -d mytag

Using Tags
Tags can be used wherever a revision no. can
be used, especially with the -r command
option.

Checking out by Tags
To check out the project myproject by tag
mytag

cvs co -r mytag myproject

When You Forget to Tag
Most commands also work with dates with the
-D command option. For example, to check
out the project myproject as it was on 14th
Sept, 2004
cvs co -D 2004-9-14 myproject

Date Formats
Accepted date formats include
2004-9-14

14 Sep 2004

13 Sep 2004 23:10

14/9/2004

5 hours ago

5 days ago

Keyword Substitution

Frequently Used Keywords
Id RCS filename, revision number, date,

author, state and locker(if locked)

$Name$ Tag name used to check out the file.

Log Accumulates commit messages for a
source file.

Setting Substitution Modes
Each file has a stored default substitution
mode, and each working copy of a file also has
a substitution mode. The former is set by -k

option to add and import. The latter is set by
the -k option to checkout and update.

Available Modes
-kkv Default form $Revision: 2.3$

-kkvl Like above, except that a locker’s name
is always inserted

-kk Only names $Revision: $

-ko Original keyword string at the time of
checkin

-kb Like above, but also inhibit EOL
conversion

-kv Only values 2.3

Public Distribution
To create a package for distributing 1.2

version of myproj
cvs export -d myproj-1.2 -r MYPROJ 1 2

myproj

myproj-1.2 is the directory into which the
files will be checked out.

Branches

Creating Branches

To branch off into mybranch from the working
copy
cvs tag -b mybranch

Accessing Branches

Branch names can appear wherever tag names
can appear. The branch name always refers to
the latest revisions at the head of the branch.

Merging Branches

To merge changes made on the branch
mybranch into the working copy
cvs update -kk -j mybranch

The -kk option is used to avoid conflicts due
to keyword expansion. Note that this should
not be used with binary files.

Multiple Merges

If the branch mybranch grows after you have
merged it at mymerge, you can merge the
grown part using
cvs update -j mymerge -j mybranch

Tracking Third-Party

Sources

Importing the Source

To import version 2.3 sources of the project
theirproj provided by the vendor Them
cvs import -m "Import of TheirProj 2.3"

theirproj Them THEIRPROJ 2 3

If the third party also uses CVS, use the -ko

option.

When You Receive New Versions

You must import again from the new sources.
If the new version is 2.4 then
cvs import -m "Import of TheirProj 2.4"

theirproj Them THEIRPROJ 2 4

And then merge the changes in the new
version into the main trunk
cvs co -j THEIRPROJ 2 3 -j THEIRPROJ 2 4

theirproj

Copyright c© 2004 Vijay Kumar B.
Permission is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License.

$Revision: 1.5 $ $Date: 2005/02/20 04:40:02 $.

